Problem 3: GCD (100pts)

The greatest common divisor of two positive integers a and b is the largest integer which evenly divides both numbers (with no remainder). Euclid, a Greek mathematician in 300 B.C., realized that the greatest common divisor of a and b is one of the following:

  • the smaller value if it evenly divides the larger value, or
  • the greatest common divisor of the smaller value and the remainder of the larger value divided by the smaller value.

In other words, if a is greater than b and a is not divisible by b, then

gcd(a, b) = gcd(b, a % b)

Write the gcd function recursively using Euclid's algorithm.

def gcd(a, b): """Returns the greatest common divisor of a and b. Should be implemented using recursion. >>> gcd(34, 19) 1 >>> gcd(39, 91) 13 >>> gcd(20, 30) 10 >>> gcd(40, 40) 40 """ "*** YOUR CODE HERE ***"