Problem 5: Remainder Generator (0pts)

Like functions, generators can also be higher-order. For this problem, we will be writing remainders_generator, which yields a series of generator objects.

remainders_generator takes in an integer m, and yields m different generators. The first generator is a generator of multiples of m, i.e. numbers where the remainder is 0. The second is a generator of natural numbers with remainder 1 when divided by m. The last generator yields natural numbers with remainder m - 1 when divided by m. Note that different generators should not influence each other.

Hint: Consider defining an inner generator function. Each yielded generator varies only in that the elements of each generator have a particular remainder when divided by m. What does that tell you about the argument(s) that the inner function should take in?

def remainders_generator(m): """ Yields m generators. The ith yielded generator yields natural numbers whose remainder is i when divided by m. >>> import types >>> [isinstance(gen, types.GeneratorType) for gen in remainders_generator(5)] [True, True, True, True, True] >>> remainders_four = remainders_generator(4) >>> for i in range(4): ... print("First 3 natural numbers with remainder {0} when divided by 4:".format(i)) ... gen = next(remainders_four) ... for _ in range(3): ... print(next(gen)) First 3 natural numbers with remainder 0 when divided by 4: 4 8 12 First 3 natural numbers with remainder 1 when divided by 4: 1 5 9 First 3 natural numbers with remainder 2 when divided by 4: 2 6 10 First 3 natural numbers with remainder 3 when divided by 4: 3 7 11 """ "*** YOUR CODE HERE ***"

Note that if you have implemented this correctly, each of the generators yielded by remainder_generator will be infinite - you can keep calling next on them forever without running into a StopIteration exception.