
Scheme

Slides adapted from Berkeley cs61a

Scheme is a Dialect of Lisp

What are people saying about Lisp?

•"If you don't know Lisp, you don't know what it means for a programming
language to be powerful and elegant."

- Richard Stallman, created Emacs & the first free variant of UNIX

•"The only computer language that is beautiful."

-Neal Stephenson, DeNero's favorite sci-fi author

•"The greatest single programming language ever designed."

-Alan Kay, co-inventor of Smalltalk and OOP

Scheme programs consist entirely of two types of expressions.

Atomic expressions
● Self-evaluating: numbers, booleans

3, 5.5, -10, #t, #f
● Symbols: names bound to values

+, modulo, list, x, foo, hello-world

Combinations
(<operator> <operand1> <operand2> …)

Scheme expressions

A combination is either a call expression or a special form expression.

(Atoms: primitive values that cannot be broken up into smaller parts)

Call Expressions

Call expressions

(<operator> <operand1> <operand2> …)

A call expression applies a procedure to some arguments.

How to evaluate call expressions:
Step 1. Evaluate the operator to get a procedure.
Step 2. Evaluate all operands left to right to get the arguments.
Step 3. Apply the procedure to the arguments.

Key

Evaluate operator

Evaluate operand

Apply (* 4 6)

(- (+ 7 (* 4 6)) (* 3 5))

- (+ 7 (* 4 6))

+ 7

* 4 6

* 3

(* 3 5)

5

24

31 15

16

Call Expressions

Call expressions include an operator and 0 or more operands in parentheses

(Demo_1)

“quotient” names Scheme’s built-in
integer division procedure (i.e., function)

Combinations can span multiple lines
(spacing doesn’t matter)

>(quotient 10 2)
5
>(quotient (+ 8 7) 5)
3
>(+ (* 3

(+ (* 2 4)
(+ 3 5)))

(+ (- 10 7)
6))

Special Form Expressions

(<operator> <operand1> <operand2> …)

<operator> : define, if, lambda, etc.

Assigning values to names

The define special form assigns a value to a name:

(define <name> <expr>)

How to evaluate:
Step 1. Evaluate the given expression.
Step 2. Bind the resulting value to the given name in the current frame.
Step 3. Return the name as a symbol.

scm> (define x (+ 3 4))
x
scm> x
7
scm> (define x (+ x 5))
x
scm> x
12

Control flow

The if special form allows us to evaluate an expression based on a condition:

(if <predicate> <if-true> <if-false>)

How to evaluate:
Step 1. Evaluate the <predicate>.
Step 2. If <predicate> evaluates to anything but #f, evaluate <if-true> and return
the value. Otherwise, evaluate <if-false> if provided and return the value.

scm> (if #t 3 5)
3
scm> (if 0 (+ 1 0) (/ 1 0))
1
scm> (if (> 10 1) (* 5 6))
30
scm> (if (not 4) 1 (if #f 5 6))
6

#f is the only Falsy value
in Scheme

Defining functions with names

The second version of define is a shorthand for creating a function with a name:

(define (<name> <param1> <param2> …) <body>)

How to evaluate:
Step 1. Create a lambda procedure with the given parameters and body.
Step 2. Bind it to the given name in the current frame.
Step 3. Return the function name as a symbol.

scm> (define (square x) (* x x))
square
scm> square
(lambda (x) (* x x))
scm> (square 4)
16
scm> (square -10)
100

(Demo_2)

Lambda Expressions

The lambda special form returns a lambda procedure.

(lambda (<param1> <param2> …) <body>)

How to evaluate:
Step 1. Create a lambda procedure with the given parameters and body.
Step 2. Return the lambda procedure.

scm> (lambda (x) (* x x))
(lambda (x) (* x x))
scm> ((lambda (x) (* x x)) 5)
25
scm> (define square (lambda (x) (* x x)))
square
scm> (square 4)
16

The body expression is
evaluated when the lambda
procedure is applied.

Lambda Expressions

Two equivalent expressions:

(define (plus4 x) (+ x 4))

(define plus4 (lambda (x) (+ x 4)))

Lambda Expressions

Two equivalent expressions:

(define (plus4 x) (+ x 4))

(define plus4 (lambda (x) (+ x 4)))

((lambda (x y z) (+ x y (square z))) 1 2 3)

Evaluates to
the x+y+z2
procedure

An operator can be a call expression too:

Lambda Expressions

Two equivalent expressions:

(define (plus4 x) (+ x 4))

(define plus4 (lambda (x) (+ x 4)))

((lambda (x y z) (+ x y (square z))) 1 2 3)

Evaluates to
the x+y+z2
procedure

黑板时间

An operator can be a call expression too:

Check Your Understanding

What would Scheme display for the following expressions?

scm> (define x 5)

scm> (lambda (x y) (print 2))

scm> ((lambda (x) (print x)) 1)

scm> (define f (lambda () #f))

scm> (if f x (+ x 1))

scm> (if (f) (print 5) 6)

scm> (+ (if 1 2 3) (if 4 5 6))

(define <name> <expr>)
Step 1. Evaluate the given expression.
Step 2. Bind the value to the given name.
Step 3. Return the name as a symbol.

(lambda (<p1> <p2> …) <body>)
Step 1. Create a procedure with the given
parameters and body.
Step 2. Return the procedure.

(if <pred> <if-true> <if-false>)
Step 1. Evaluate the predicate.
Step 2. If the predicate isn't #f, evaluate <if-
true> and return the value. Otherwise,
evaluate <if-false> and return the value.

x

(lambda (x y) (print 2))

1

f

5

6

7

Example: Factorial

Recall the factorial function, which takes in an integer n and computes the product of all
the integers from 1 to n.

Let's try to write it in Scheme!

Scheme has no special form that allows for iteration, so we have to use recursion.

Ideas:
1. Base case: if n is 0 or 1, just return 1
2. Recursive case: Return the factorial of

the previous number multiplied by n
3. Use the if special form to capture our

two cases:
(if <pred> <if-true> <if-false>)

(define (fact n)

Combinations can be split
across multiple lines

(if (<= n 1)

(* n (fact (- n 1)))))
1

No explicit return
statement!

Try it out!

Example: Counting up

Let's write a function count-up that takes in an integer n and prints all the integers from 1
to n.

Ideas:
1. We need to keep track of the

current element, k. k starts at 1.
2. Since we have to use recursion,

we can write a helper function
to keep track of k.

3. Print k at the beginning of
every call and only make a
recursive call to print more
numbers if k is less than n.

(define (count-up n)
(define (counter k)

(counter (+ k 1))))

(print k)

If there is more than one expression in
the body, the function returns the value
of the last expression.

(if (< k n)

(counter 1))

● Scheme programs consist only of expressions, all of which can be categorized into
either atomic expressions or combinations.

● Combinations are either call expressions or special form expressions, and they differ
in the value of the operator.

● Scheme call expressions are evaluated just like they are in Python, but each special
form has its own rules of evaluation.

● The special forms we learned today are if, define, and lambda.

● Writing some procedures in Scheme will require recursion; there is no special form for
iteration.

The X You Need To Understand In This Lecture

