
Higher-Order
Functions
9 / 30 / 2019

Slides adapted from Berkeley CS61a

Higher-Order Functions

Functions are first-class, meaning they can be manipulated as values

A higher-order function is:

1. A function that takes a function as an argument

and/or

1. A function that returns a function as a return value

Designing Functions

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it
might possibly return.

A pure function's behavior is the relationship it
creates between input and output.

def square(x):
"""Return X * X"""

x is a number

square returns a non-
negative real number

square returns the
square of x

A Guide to Designing Function

Give each function exactly one job, but make it apply to many related situations

>>> round(1.23)
1

>>> round(1.23, 1)
1.2

>>> round(1.23, 0)
1

>>> round(1.23, 5)
1.23

Don’t repeat yourself (DRY). Implement a process just once, but execute it
many times.

Generalization

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Area:

Finding common structure allows for shared implementation
Demo

Higher-Order Functions

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

Demo

Summation Example

def cube(k):

return pow(k, 3)

def summation(n, term):

"""Sum the first n terms of a sequence.

>>> summation(5, cube)

225

"""

total, k = 0, 1

while k <= n:

total, k = total + term(k), k + 1

return total

Function of a single argument
(not called "term")

A formal parameter that will
be bound to a function

The cube function is passed
as an argument value0 + 1 + 8 + 27 + 64 + 125

The function bound to term
gets called here

Functions as Return Values

Demo

Locally Defined Functions

Functions defined within other function bodies are bound to names in a local frame

def make_adder(n):
"""Return a function that takes one argument k and returns k + n.

>>> add_three = make_adder(3)
>>> add_three(4)
7
"""
def adder(k):

return k + n
return adder

A function that
returns a
function

The name add_three is bound
to a function

A def statement
within another def

statement

Can refer to names in the
enclosing function

Call Expressions as Operator Expressions

make_adder(1) (2)

make_adder(1)

3

2

make_adder(1)

func adder(k)

make_adder(n):1

func adder(k)

def adder(k):
return k + n

return adder

An expression that
evaluates to a function

An expression that
evaluates to its argument

A More Complex Example
def make_adder(n):

"""Return a function that takes one argument k and returns k +

n.

>>> add_three = make_adder(3)

>>> add_three(4)

"""

def adder(k):

return k + n

return adder

def square(x):

return x * x

def compose1(f, g):

def h(x):

return f(g(x))

return h

compose1(square, make_adder(2))(3)

Self Reference

Returning a Function Using Its Own Name

def print_sums(n):

print(n)

def next_sum(k):

return print_sums(n + k)

return next_sum

print_sums(1)(3)(5)

Summary

● Higher-order function: any function that either accepts a function as an argument

and/or returns a function

● Why are these useful?

○ Generalize over different form of computation

○ Helps remove repetitive segments of code

● One use case: summation

○ We generalized over the computation of each term

● We saw nested functions can access variables in outer function (adder) as well as the

outer function itself (print_sums)

