
Environment Diagrams

Slides adapted from Berkeley CS61a 



What are Environment Diagrams?

● A visual tool to keep track of bindings & state of a 
computer program

● In this class, we use Python as our primary language
○ The diagrams we teach can be applied to similar 

languages



Why do we use Environment Diagrams?

• Environment Diagrams are conceptual
• understand why programs work the way they do
• confidently predict how a program will behave

• Environment Diagrams are helpful for debugging
• When you're really stuck, 

diagramming code > staring at lines of code

• Environment Diagrams will be used in future courses
• CS 61C (Machine Structures)
• CS 164 (Programming Languages and Compilers)



What do we've seen so far

Assignment Statements

x = 1

x = x + x + x

Def Statements

def square(x):

return x * x

Call Expressions

square(4) Frame



Terminology: Frames

A frame keeps track of variable-to-value bindings. 

● Every call expression has a corresponding frame.

Global, a.k.a. the global frame, is the starting frame.

● It doesn't correspond to a specific call expression.

Parent frames

● The parent of a function is the frame in which it was defined.
● If you can't find a variable in the current frame, you check it's 

parent, and so on. If you can't find the variable, NameError

Demo



Draw the environment diagram

def square(x):
return x * x

def sum_of_squares(x, y):
return square(x) + square(y)

sum_of_squares(3, 4)

Check Your Understanding



square(add_one(9))

Review: Evaluation Order

def add_one(x):

y = x + 1

return y

def square(x):

return x * x

Remember to evaluate the operator, then the operand(s), then 
apply the operator onto the operand(s).

What will the environment diagram look like? (When are frames created?)

The environment diagram should reflect Python’s evaluation.

Evaluate the operator. A 
function value is returned

Evaluate the operand. Now 
we have evaluate another 

expression. 

Evaluate the operator. A 
function value is returned

Evaluate the operand..

Returns 10

Returns 100

Demo



Variable Lookup



Where do we look next?

Local Names

Variable Lookup:

• Lookup name in the current frame
• Lookup name in parent frame, its parent frame, etc..
• Stop at the global frame
• If not found, an error is thrown

def f(x, y):

return g(x)

def g(z):

return z + x

result = f(5, 10)

Name “x” is not found

Name “x” is not found, again

An error is thrown

What happens here?

Important: There was no lookup done in f1 since 
the parent of f2 was Global



Evaluation vs Apply

def a_plus_bc(a, b, c):

"""

>>> a_plus_bc(2, 3, 4) # 2 + 3 * 4

14

"""

bc = b * c

return a + bca_plus_bc(square(2), 3, square(square(3)))

Demo

How many frames are 
created?

In what order?

Apply operator 
square function to 

operand 2.

Apply operator 
square function to 

operand 3.

Apply operator 
square function to 

operand 9.

Apply operator 
a_plus_bc function to 

operand 4, 3, 81.



Break/Q&A



Lambda Expressions



Lambda Expressions

Expressions that evaluate to functions!

>>> square = lambda x: x * x
A function with parameter x that returns the value of x * x

>>> square
<function <lambda> ... >
>>> square(4)
16
>>> x = square(5)
>>> x
25



Lambda Expressions vs def Statements

● Both create a function with the same behavior

● The parent frame of each function is the frame in which they were 

defined

● Both bind the function to the same name

def square(x):
return x * x

square = lambda x: x * x

● Only the def statement gives the function an intrinsic name



Environment Diagram

times = 2

def repeated(f, n, x):
while n > 0:

x = f(x)
n -= 1
return x

def square(x):
return x * x

repeated(square, times, 3)

times = 2

def repeated(f, n, x):
while n > 0:

x = f(x)
n -= 1

return x

repeated(lambda x: x*x, times, 3)



Comparisons times = 2

def repeated(f, n, x):

while n > 0:

x = f(x)

n -= 1

return x

def square(x):

return x * x

repeated(square, times, 3)

times = 2

def repeated(f, n, x):

while n > 0:

x = f(x)

n -= 1

return x

repeated(lambda x: x * x, times, 3)

Bounded 
to name in 
global 
frame

Not
bounded to 
name in 
global 
frame

Parent is 
the global 
frame

Parent is 
the global 
frame

Intrinsic name is “square”

Intrinsic name is “λ”



Higher Order Functions



Higher Order Functions

A function that ... 

● takes a function as an argument value, and/or 

● returns a function as a return value

You just saw this in 

the previous example!

times = 2

def repeated(f, n, x):
while n > 0:

x = f(x)
n -= 1
return x

repeated(lambda x: x*x, times, 3)



Locally Defined Functions

>>> def make_greeter(name):

… return lambda greeting: print(greeting, name)

>>> greeter_function = make_greeter("Tiffany")

>>> greeter_function("Hey what's up, ")

Currying

>>> make_greeter("Tiffany")("Where's the party at, ")



Summary

● Environment Diagrams formalize the evaluation procedure for Python

○ Understanding them will help you think deeply about how the code that 

you are writing actually works

● Lambda functions are similar to functions defined with def, but are 

nameless

● A Higher Order Function is a function that either takes in functions as 

an argument (shown earlier) and/or returns a function as a return 

value (will see soon)


