
Exercise Class I

Shengyi Jiang, Qinlin Chen, Yicheng Huang,
Zhiqi Chen & Zhehao Lin

October 29, 2020

https://www.nju.edu.cn
https://cs.nju.edu.cn


Table of Contents

Lab03-05 Maximum Subsequence

HW03-02 Ping-pong

HW03-03 Count Change

HW02-04 Make Repeater

HW03-04 Missing Digits

Lab02-04 I Heard You Liked Functions



Table of Contents

Lab03-05 Maximum Subsequence

HW03-02 Ping-pong

HW03-03 Count Change

HW02-04 Make Repeater

HW03-04 Missing Digits

Lab02-04 I Heard You Liked Functions



Lab03-05 Maximum Subsequence

Problem: Return the maximum subsequence (not necessarily contiguous) of length at
most l (e.g., 3) that can be found in the given number n (e.g., 20125).
Thought:

1. It’s hard to swallow it all once, so how can I divide this problem into smaller ones?

2. I’m given n and l, where n can repeatedly perform n//10 until reaching 0, and l

may decrease itself to 0.

3. Well, each time I only consider a bit of n, which has only two choices: in the
maximum subsequence or not.

Solution: For each n and l, we denote the maximum subsequence in this case as
max subseq(n,l). max subseq(n,l) is the larger one of the following splitted cases.

• max subseq(n//10, l-1)*10 + n%10 // the last digit is in max subseq(n,l)

• max subseq(n//10, l) // otherwise



Lab03-05 Maximum Subsequence (cont’d)

Brief proof of solution: For the convenience of presentation, we denote the number n
as n1n2 . . . nk , where ni means the i-th bit of n. We also denote the maximum
subsequence of n1n2 . . . nk in length at most l as s(n1n2 . . . nk , l). For example, when
n1 = 2 and n2 = 3, s(n1n2, 1) = n2.

• If nk is in s(n1n2 . . . nk , l), we can conclude that
s(n1n2 . . . nk−1, l − 1)nk = s(n1n2 . . . nk , l) since nk occupies one length. To
prove, if we have another different subsequences tnk = s(n1n2 . . . nk , l), we can
always replace t by s(n1n2 . . . nk−1, l − 1) because the latter one is the maximum
subsequences of n1n2 . . . nk−1 in length at most l − 1.

• If nk is not in s(n1n2 . . . nk , l), we can conclude that
s(n1n2 . . . nk−1, l) = s(n1n2 . . . nk , l). The proof is similar.

• Combining the above two cases, we choose the larger one, which is the globally
maximum solution.



Lab03-05 Maximum Subsequence (cont’d)
Example: The following table shows the calculation procedures of the problem
max subseq(n=20125, l=3). The color blue represents the base case of recursion,
while the color red represents the original problem.
Insight: When splitting problems, from red to blue, each step we jump to the one
above or left-above. (max(left-above * 10 + now last digit, above)). On the
contrary, the value calculated flows from blue to red.

value
flow

l
0 1 2 3

n

0 ↓↘∗ ↓↘ ↓↘ ↓
2 ↓↘ ↓∗↘ ↓↘ ↓

20 ↘ ↓∗↘ ↓↘ ↓
201 ↘∗ ↓↘ ↓

2012 ↘∗ ↓
20125 goal

max subseq
(n, l)

l
0 1 2 3

n

0 0 0 0 0
2 0 2 2 2

20 0 2 20 20
201 0 2 21 201

2012 0 2 22 212
20125 0 5 25 225



Lab03-05 Maximum Subsequence (cont’d)

Code Sample:

def max_subseq(n, l):

if l == 0 or n == 0:

return 0

case1 = max_subseq(n // 10, l - 1) * 10 + n % 10

case2 = max_subseq(n // 10, l)

return max(case1, case2)



Table of Contents

Lab03-05 Maximum Subsequence

HW03-02 Ping-pong

HW03-03 Count Change

HW02-04 Make Repeater

HW03-04 Missing Digits

Lab02-04 I Heard You Liked Functions



HW03-02 Ping-pong

Key points:

• The ping-pong value is locally monotonous (e.g., it decreases from 7 to 0 when
the index increases from 7 to 14). → A locally monotonous variable recording
current value.

• The ping-pong value sometimes (when the index k is a multiple of 7 or contains
the digit 7) changes its monotonicity. → A variable recording the
direction/monotonicity.

• In a tail recursion manner, it performs well.



HW03-02 Ping-pong (cont’d)

Code Sample: cur val records the current value, and direc records the current
direction (+1 or -1). -direc means changing direction.

def pingpong(n):

def state(cur_index, target, cur_val, direc):

if cur_index == target:

return cur_val

if cur_index % 7 == 0 or num_sevens(cur_index) > 0:

return state(cur_index + 1, target, cur_val - direc, -direc)

return state(cur_index + 1, target, cur_val + direc, direc)

return state(1, n, 1, 1)



Table of Contents

Lab03-05 Maximum Subsequence

HW03-02 Ping-pong

HW03-03 Count Change

HW02-04 Make Repeater

HW03-04 Missing Digits

Lab02-04 I Heard You Liked Functions



HW03-03 Count Change

Problem: Once the machines take over, the denomination of every coin will be a
power of two: 1-cent, 2-cent, 4-cent, 8-cent, 16-cent, etc. There will be no limit to
how much a coin can be worth. Given a positive integer total, a set of coins makes
change for total if the sum of the values of the coins is total. Write a recursive
function count change that takes a positive integer total and returns the number
of ways to make change for total using these coins of the future.



HW03-03 Count Change (cont’d)

Thought: What do we have? (1) Unlimited kinds of coins with increasing
denominations; (2) The goal of summation of coins, total. The lower bound of (1) is
known (i.e., 1-cent), while the upper bound of (2) is also known (i.e., total). So it’s
not hard to figure out that you should try to use coins with increasing denominations
in order, while goal is decreasing when using coins. The rest is similar to the problem
“Maximum Subsequence” talked above.
Solution: Regarding to 1-cent denomination, we have two choices: use a coin with
this denomination or simply not use this denomination. If we use it, we can decrease
our total by 1 and can further decide whether to use 1-cent denomination; If we do
not use it, our total is unchanged and we can only use coins with denominations
larger than 1 (at least 2-coin) later. The same is true for i-coin. The number of ways
is the addition of that of these two choices.



HW03-03 Count Change (cont’d)

Solution (cont’d): Denote
rec count(min coin,sub total) as the number
of ways to make change for sub total using coins
with denominations min coin-cent,
2*min coin-cent, etc.

rec count(min coin, sub total)

= rec count(min coin*2, sub total)

+ rec count(min coin, sub total-min coin)

Base Case:

• sub total == 0

→ return 1 (exactly match)

• sub total < min coin

→ return 0 (no more enough)

Example: When we make changes
for 7:

rec count
min coin

8 4 2 1

sub total

0 1 1 1 1
1 0 0 0 1
2 0 0 1 2
3 0 0 0 2
4 0 1 1 4
5 0 0 0 4
6 0 0 2 6
7 0 0 0 6



HW03-03 Count Change (cont’d)

Code Sample:

def count_change(total):

def rec_count(min_coin, sub_total):

if sub_total == 0:

return 1

if sub_total < min_coin:

return 0

min_coin_used = rec_count(min_coin, sub_total - min_coin)

min_coin_unused = rec_count(min_coin * 2, sub_total)

return min_coin_used + min_coin_unused

return rec_count(1, total)



Table of Contents

Lab03-05 Maximum Subsequence

HW03-02 Ping-pong

HW03-03 Count Change

HW02-04 Make Repeater

HW03-04 Missing Digits

Lab02-04 I Heard You Liked Functions



HW02-04 Make Repeater

Problem: Implement the function make_repeater so that
make_repeater(h, n)(x) returns h(h(...h(x)...)), where h is applied n times.



HW02-04 Make Repeater (cont’d)

Solution: It’s easy to define a function
that computes the value of h(n)(x). So just
define a helper function (that computes the
value of h(n)(x)) and returns it.

def make_repeater(h, n):

def repeater(x):

i = 0

while i < n:

x = h(x)

i += 1

return x

return repeater



HW02-04 Make Repeater (cont’d)

Solution: A recursive thinking:

• n = 1, return h (n = 0, return identity)

• n = k, we have
h(k−1)=make_repeater(h,n-1) ⇒
h(k)=compose(h,make_repeater(h,n-1))

def make_repeater(h, n):

if n == 1:

return h

else:

return compose(h,

make_repeater(h, n-1))



HW02-04 Make Repeater (cont’d)

Solution: compose is an operator defined
on function space F × F . Especially, when
two operands are f and power of f ,
compose is commutable. There is a
homomorphism between (f , compose) and
(N+,+). Recall that we have defined
accumulate to abstract similar operations
on int, so...

def make_repeater(h, n):

return accumulate(compose,

identity, n, lambda i: h)



Table of Contents

Lab03-05 Maximum Subsequence

HW03-02 Ping-pong

HW03-03 Count Change

HW02-04 Make Repeater

HW03-04 Missing Digits

Lab02-04 I Heard You Liked Functions



HW03-04 Missing Digits

Problem: Write the recursive function missing_digits that takes a number n that is
sorted in non-decreasing order. It returns the number of missing digits in n. A missing
digit is a number between the first and last digit of n of a that is not in n.



HW03-04 Missing Digits (cont’d)

Solution: The number is sorted in
non-descreasing order. We can
track the value of current digit d .

• base case: n < 10, return 0

• n, d , compute next_d and
compute f(n//10, next_d).

Be careful with same digits.

def missing_digits(n):

def helper(n, current_digit):

if n < 10:

return 0

next_digit = (n // 10) % 10

return max(current_digit - \

next_digit - 1, 0) + \

helper(n//10, next_digit)

return helper(n, n % 10)



HW03-04 Missing Digits (cont’d)

You can find that next_d is equal to the last digit of n. So we do not have to exlicitly
track it.

def missing_digits(n):

if n < 10:

return 0

right_first_digit = n % 10

right_second_digit = (n // 10) % 10

if right_second_digit < right_first_digit:

return missing_digits(n // 10) + \

(right_first_digit - right_second_digit) - 1

return missing_digits(n // 10)



Table of Contents

Lab03-05 Maximum Subsequence

HW03-02 Ping-pong

HW03-03 Count Change

HW02-04 Make Repeater

HW03-04 Missing Digits

Lab02-04 I Heard You Liked Functions



Lab02-04 I Heard You Liked Functions

Define a function cycle that takes in three functions f1, f2, f3, as arguments. cycle will
return another function that should take in an integer argument n and return another
function. That final function should take in an argument x and cycle through applying
f1, f2, and f3 to x, depending on what n was.

• n = 0, return x

• n = 1, apply f1 to x, or return f1(x)

• n = 2, apply f1 to x, and then f2 to the result of that, or return f2(f1(x))

• n = 3, apply f1 to x, f2 to the result of applying f1, and then f3 to the result of
applying f2, or f3(f2(f1(x)))

• n = 4, start the cycle again applying f1, then f2, then f3, then f1 again, or
f1(f3(f2(f1(x))))

And so forth.



Lab02-04 I Heard You Liked Functions (cont’d)

Solution: We have f1, f2, f3: T→ T, we need a function
cycle : (T→ T,T→ T,T→ T)→ (n : int→ x : T→ y : T). First, define the
inner-most function g that computes the value given x and n. Second, define function
f that take n that returns g(x, n). Last, return f.



Lab02-04 I Heard You Liked Functions (cont’d)

T = TypeVar('T')

def g(x: T, n: int, f1: Callable[[T], T],

f2:Callable[[T], T], f3:Callable[[T], T]):

res, i = x, 1

while i <= n:

if i % 3 == 1:

res = f1(res)

elif i % 3 == 2:

res = f2(res)

else:

res = f3(res)

i += 1

return res

def f(n: int, f1: Callable[[T], T],

f2: Callable[[T], T], f3: Callable[[T], T]):

return lambda x: g(x, n, f1, f2, f3)

def cycle(f1: Callable[[T], T],

f2: Callable[[T], T], f3: Callable[[T], T]):

return lambda n: f(n, f1, f2, f3)

def cycle(f1, f2, f3):

def f(n):

def g(x):

res, i = x, 1

while i <= n:

if i % 3 == 1:

res = f1(res)

elif i % 3 == 2:

res = f2(res)

else:

res = f3(res)

i += 1

return res

return g

return f



Q & A

https://www.nju.edu.cn
https://cs.nju.edu.cn

	Lab03-05 Maximum Subsequence
	HW03-02 Ping-pong
	HW03-03 Count Change
	HW02-04 Make Repeater
	HW03-04 Missing Digits
	Lab02-04 I Heard You Liked Functions

