Exercise Class I

Shengyi Jiang, Qinlin Chen, Yicheng Huang, Zhiqi Chen \& Zhehao Lin

October 29, 2020

Table of Contents

Lab03-05 Maximum Subsequence

HW03-02 Ping-pong

HW03-03 Count Change

HW02-04 Make Repeater

HW03-04 Missing Digits

Lab02-04 I Heard You Liked Functions
(2)

Table of Contents

Lab03-05 Maximum Subsequence

HW03-02 Ping-pong

HW03-03 Count Change

HW02-04 Make Repeater

HW03-04 Missing Digits

Lab02-04 I Heard You Liked Functions

E

Lab03-05 Maximum Subsequence

Problem: Return the maximum subsequence (not necessarily contiguous) of length at most 1 (e.g., 3) that can be found in the given number n (e.g., 20125).

Thought:

1. It's hard to swallow it all once, so how can I divide this problem into smaller ones?
2. I'm given n and 1 , where n can repeatedly perform $n / / 10$ until reaching 0 , and 1 may decrease itself to 0 .
3. Well, each time I only consider a bit of n, which has only two choices: in the maximum subsequence or not.
Solution: For each n and 1 , we denote the maximum subsequence in this case as max_subseq $(n, 1)$. max_subseq (n, l) is the larger one of the following splitted cases.

- max_subseq(n//10, l-1) $* 10+n \% 10 / /$ the last digit is in max_subseq(n,l)
- max_subseq(n//10, 1) // otherwise

Lab03－05 Maximum Subsequence（cont＇d）

Brief proof of solution：For the convenience of presentation，we denote the number n as $n_{1} n_{2} \ldots n_{k}$ ，where n_{i} means the i－th bit of n ．We also denote the maximum subsequence of $n_{1} n_{2} \ldots n_{k}$ in length at most $/$ as $s\left(n_{1} n_{2} \ldots n_{k}, I\right)$ ．For example，when $n_{1}=2$ and $n_{2}=3, s\left(n_{1} n_{2}, 1\right)=n_{2}$ ．
－If n_{k} is in $s\left(n_{1} n_{2} \ldots n_{k}, l\right)$ ，we can conclude that $s\left(n_{1} n_{2} \ldots n_{k-1}, l-1\right) n_{k}=s\left(n_{1} n_{2} \ldots n_{k}, l\right)$ since n_{k} occupies one length．To prove，if we have another different subsequences $t n_{k}=s\left(n_{1} n_{2} \ldots n_{k}, l\right)$ ，we can always replace t by $s\left(n_{1} n_{2} \ldots n_{k-1}, l-1\right)$ because the latter one is the maximum subsequences of $n_{1} n_{2} \ldots n_{k-1}$ in length at most $I-1$ ．
－If n_{k} is not in $s\left(n_{1} n_{2} \ldots n_{k}, l\right)$ ，we can conclude that $s\left(n_{1} n_{2} \ldots n_{k-1}, l\right)=s\left(n_{1} n_{2} \ldots n_{k}, l\right)$ ．The proof is similar．
－Combining the above two cases，we choose the larger one，which is the globally maximum solution．

Lab03-05 Maximum Subsequence (cont'd)

Example: The following table shows the calculation procedures of the problem max_subseq ($\mathrm{n}=20125$, $\mathrm{l}=3$). The color blue represents the base case of recursion, while the color red represents the original problem.
Insight: When splitting problems, from red to blue, each step we jump to the one above or left-above. (max (left-above * 10 + now_last_digit, above)). On the contrary, the value calculated flows from blue to red.

value flow	1				
	0	1	2	3	
n	$\downarrow \searrow *$	$\downarrow \searrow$	$\downarrow \searrow$	\downarrow	
	2	$\downarrow \searrow$	$\downarrow_{*} \searrow$	$\downarrow \searrow$	\downarrow
	20	\searrow	$\downarrow_{*} \searrow$	$\downarrow \searrow$	\downarrow
	201		$\searrow *$	$\downarrow \searrow$	\downarrow
	2012			$\searrow *$	\downarrow
	20125				goal

max_subseq					
(n, l)	l				
	0	1	2	3	
n	0	$\mathbf{0}$	0	0	0
	2	0	$\mathbf{2}$	2	2
	20	0	$\mathbf{2}$	20	20
	201	0	$\mathbf{2}$	21	201
2012	0	2	$\mathbf{2 2}$	212	
	20125	0	5	25	$\mathbf{2 2 5}$

Lab03-05 Maximum Subsequence (cont'd)

Code Sample:

```
def max_subseq(n, l):
    if l == 0 or n == 0:
            return 0
case1 = max_subseq(n // 10, l - 1) * 10 + n % 10
case2 = max_subseq(n // 10, l)
return max(case1, case2)
```


Table of Contents

Lab03-05 Maximum Subsequence

HW03-02 Ping-pong

HW03-03 Count Change

HW02-04 Make Repeater

HW03-04 Missing Digits

Lab02-04 I Heard You Liked Functions

HW03－02 Ping－pong

Key points：
－The ping－pong value is locally monotonous（e．g．，it decreases from 7 to 0 when the index increases from 7 to 14 ）．\rightarrow A locally monotonous variable recording current value．
－The ping－pong value sometimes（when the index k is a multiple of 7 or contains the digit 7）changes its monotonicity．$\rightarrow \mathbf{A}$ variable recording the direction／monotonicity．
－In a tail recursion manner，it performs well．

HW03-02 Ping-pong (cont'd)

Code Sample: cur_val records the current value, and direc records the current direction (+1 or -1). -direc means changing direction.

```
def pingpong(n):
    def state(cur_index, target, cur_val, direc):
    if cur_index == target:
            return cur_val
    if cur_index % 7 == 0 or num_sevens(cur_index) > 0:
        return state(cur_index + 1, target, cur_val - direc, -direc)
    return state(cur_index + 1, target, cur_val + direc, direc)
    return state(1, n, 1, 1)
```


Table of Contents

Lab03－05 Maximum Subsequence

HW03－02 Ping－pong

HW03－03 Count Change

HW02－04 Make Repeater

HW03－04 Missing Digits

Lab02－04 I Heard You Liked Functions
（4）青京大，茑
를

HW03-03 Count Change

Problem: Once the machines take over, the denomination of every coin will be a power of two: 1-cent, 2-cent, 4-cent, 8-cent, 16-cent, etc. There will be no limit to how much a coin can be worth. Given a positive integer total, a set of coins makes change for total if the sum of the values of the coins is total. Write a recursive function count_change that takes a positive integer total and returns the number of ways to make change for total using these coins of the future.

HW03－03 Count Change（cont＇d）

Thought：What do we have？（1）Unlimited kinds of coins with increasing denominations；（2）The goal of summation of coins，total．The lower bound of（1）is known（i．e．，1－cent），while the upper bound of（2）is also known（i．e．，total）．So it＇s not hard to figure out that you should try to use coins with increasing denominations in order，while goal is decreasing when using coins．The rest is similar to the problem ＂Maximum Subsequence＂talked above．
Solution：Regarding to 1－cent denomination，we have two choices：use a coin with this denomination or simply not use this denomination．If we use it，we can decrease our total by 1 and can further decide whether to use 1－cent denomination；If we do not use it，our total is unchanged and we can only use coins with denominations larger than 1 （at least 2－coin）later．The same is true for i－coin．The number of ways is the addition of that of these two choices．
\curvearrowleft の®

HW03-03 Count Change (cont'd)

Solution (cont'd): Denote
rec_count (min_coin, sub_total) as the number of ways to make change for sub_total using coins with denominations min_coin-cent, $2 *$ min_coin-cent, etc.

```
    rec_count(min_coin, sub_total)
= rec_count(min_coin*2, sub_total)
```

+ rec_count(min_coin, sub_total-min_coin)

Base Case:

- sub_total == 0
\rightarrow return 1 (exactly match)
- sub_total < min_coin

nanjing university

Example: When we make changes for 7 :

rec_count	min_coin										
								8	4	2	1
sub_total	0	1	1	1	1						
	1	0	0	0	1						
	2	0	0	1	2						
	3	0	0	0	2						
	4	0	1	1	4						
	5	0	0	0	4						
	6	0	0	2	6						
	7	0	0	0	6						

HW03－03 Count Change（cont＇d）

Code Sample：

```
def count_change(total):
    def rec_count(min_coin, sub_total):
        if sub_total == 0:
            return 1
        if sub_total < min_coin:
            return 0
        min_coin_used = rec_count(min_coin, sub_total - min_coin)
        min_coin_unused = rec_count(min_coin * 2, sub_total)
        return min_coin_used + min_coin_unused
    return rec_count(1, total)
```


Table of Contents

```
Lab03－05 Maximum Subsequence
HW03－02 Ping－pong
HW03－03 Count Change
```

HW02－04 Make Repeater

HW03－04 Missing Digits

Lab02－04 I Heard You Liked Functions

를

HW02-04 Make Repeater

Problem: Implement the function make_repeater so that make_repeater $(\mathrm{h}, \mathrm{n})(\mathrm{x})$ returns $\mathrm{h}(\mathrm{h}(\ldots \mathrm{h}(\mathrm{x}) \ldots)$), where h is applied n times.

HW02-04 Make Repeater (cont'd)

Solution: It's easy to define a function that computes the value of $h^{(n)}(x)$. So just define a helper function (that computes the value of $\left.h^{(n)}(x)\right)$ and returns it.

```
def make_repeater(h, n):
    def repeater(x):
    i = 0
    while i < n:
            x = h(x)
            i += 1
    return x
    return repeater
```


HW02-04 Make Repeater (cont'd)

Solution: A recursive thinking:

- $n=1$, return $h(n=0$, return identity)
- $n=k$, we have
$h^{(k-1)}=$ make_repeater $(\mathrm{h}, \mathrm{n}-1) \Rightarrow$
$h^{(k)}=\operatorname{compose}(h$, make_repeater $(h, n-1))$

```
def make_repeater(h, n):
    if n == 1:
        return h
```

 else:
 return compose(h,
 make_repeater (h, n-1))

HW02－04 Make Repeater（cont＇d）

Solution：compose is an operator defined on function space $\mathcal{F} \times \mathcal{F}$ ．Especially，when two operands are f and power of f ， compose is commutable．There is a homomorphism between（ f ，compose）and $\left(\mathbb{N}^{+},+\right)$．Recall that we have defined

```
def make_repeater(h, n):
    return accumulate(compose,
        identity, n, lambda i: h)
```

accumulate to abstract similar operations on int，so．．．

Table of Contents

```
Lab03-05 Maximum Subsequence
HW03-02 Ping-pong
HW03-03 Count Change
HW02-04 Make Repeater
```

HW03-04 Missing Digits

Lab02-04 I Heard You Liked Functions

HW03-04 Missing Digits

Problem: Write the recursive function missing_digits that takes a number n that is sorted in non-decreasing order. It returns the number of missing digits in n. A missing digit is a number between the first and last digit of n of a that is not in n.

HW03－04 Missing Digits（cont＇d）

Solution：The number is sorted in non－descreasing order．We can track the value of current digit d ．
－base case：$n<10$ ，return 0
－n, d ，compute next＿d and compute $f(n / / 10$ ，next＿d）．

Be careful with same digits．

```
def missing_digits(n):
    def helper(n, current_digit):
        if n < 10:
            return 0
        next_digit = (n // 10) % 10
        return max(current_digit - \
        next_digit - 1, 0) + \
        helper(n//10, next_digit)
    return helper(n, n % 10)
```


HW03－04 Missing Digits（cont＇d）

You can find that next＿d is equal to the last digit of n ．So we do not have to exlicitly track it．

```
def missing_digits(n):
    if n < 10:
        return 0
    right_first_digit = n % 10
    right_second_digit = (n // 10) % 10
    if right_second_digit < right_first_digit:
        return missing_digits(n // 10) + \
        (right_first_digit - right_second_digit) - 1
    return missing_digits(n // 10)
```


Table of Contents

```
Lab03-05 Maximum Subsequence
HW03-02 Ping-pong
HW03-03 Count Change
HW02-04 Make Repeater
HW03-04 Missing Digits
Lab02-04 I Heard You Liked Functions
```


Lab02-04 I Heard You Liked Functions

Define a function cycle that takes in three functions $\mathfrak{f 1}, \mathrm{f} 2, \mathrm{f} 3$, as arguments. cycle will return another function that should take in an integer argument n and return another function. That final function should take in an argument x and cycle through applying $\mathrm{f} 1, \mathrm{f} 2$, and f 3 to x , depending on what n was.

- $\mathrm{n}=0$, return x
- $\mathrm{n}=1$, apply f 1 to x , or return $\mathrm{f} 1(\mathrm{x})$
- $\mathrm{n}=2$, apply f 1 to x , and then f 2 to the result of that, or return $\mathrm{f} 2(\mathrm{f} 1(\mathrm{x}))$
- $\mathrm{n}=3$, apply f 1 to $\mathrm{x}, \mathrm{f} 2$ to the result of applying f 1 , and then f 3 to the result of applying f2, or f3(f2(f1(x)))
- $\mathrm{n}=4$, start the cycle again applying $f 1$, then f 2 , then f 3 , then f 1 again, or f1(f3(f2(f1(x))))
And so forth.

Lab02-04 I Heard You Liked Functions (cont'd)

Solution: We have f1, f2, f3: $\mathrm{T} \rightarrow \mathrm{T}$, we need a function
cycle : $(\mathrm{T} \rightarrow \mathrm{T}, \mathrm{T} \rightarrow \mathrm{T}, \mathrm{T} \rightarrow \mathrm{T}) \rightarrow(n: \operatorname{int} \rightarrow x: \mathrm{T} \rightarrow y: \mathrm{T})$. First, define the inner-most function g that computes the value given x and n . Second, define function f that take n that returns $g(x, n)$. Last, return f.

Lab02－04 I Heard You Liked Functions（cont＇d）

```
T = TypeVar('T')
def g(x: T, n: int, f1: Callable[[T], T],
        f2:Callable[[T], T], f3:Callable[[T], T]):
        res, i = x, 1
        while i <= n:
            if i % 3 == 1:
                res = f1(res)
            elif i % 3 == 2:
                res = f2(res)
            else:
                res = f3(res)
                i += 1
        return res
def f(n: int, f1: Callable[[T], T],
        f2: Callable[[T], T], f3: Callable[[T], T]):
        return lambda x: g(x, n, f1, f2, f3)
def cycle(f1: Callable[[T], T],
def cycle(f1, f2, f3):
    def f(n):
        def g(x):
                res, i = x, 1
                while i <= n:
                    if i % 3 == 1:
                res = f1(res)
                    elif i % 3 == 2:
                    res = f2(res)
                    else:
                    res = f3(res)
                    i += 1
                return res
        return g
    return f
            f2: Callable[[T], T], f3: Callable[[T], T]):
    return lambda n: f(n, f1, f2, f3)
```

* 4 雷 京 大第

Q \& A

