
SQL II
By Richard Roggenkemper and Shide Dehghani

Review of Tables and Join

Table

A table stores data. It consists of...
● a fixed number of columns.
● data entries stored in rows.

SELECT [expr] AS [name], [expr] AS [name], ... UNION
SELECT [expr] AS [name], [expr] AS [name], ... UNION
SELECT [expr] AS [name], [expr] AS [name], ...;

To create rows of data from existing tables, use a SELECT statement
with a FROM clause:

CREATE TABLE [name] AS ...;

To create rows of data, UNION together SELECT statements:

SELECT [columns] FROM [table] WHERE [condition]
ORDER BY [order] [ASC/DESC] LIMIT [number];

To make a table in SQL, use a CREATE TABLE statement:

Join

Given multiple tables, we can join them together by specifying their names,
separated by commas, in the FROM clause of a SELECT statement.

SELECT * FROM table1, table2;

When we join two tables, we get a new table with one row for each combination of
rows from the original tables.

parent child

abraham barack

abraham clinton

name fur

abraham long

barack short

clinton long

parent child name fur

abraham barack abraham long

abraham barack barack short

abraham barack clinton long

abraham clinton abraham long

abraham clinton barack short

abraham clinton clinton long

Demo_1

Check Your Understanding

1. Write an SQL query that outputs the first 10 artists who became active after
2015.

1. Write an SQL query that outputs the names and artists of songs that were
released in 2010 ordered by the first year active of the artist.

Table songs:
name | artist | album

Table artists:
name | first_year_active

Table albums:
name | artist | release_year

SELECT name FROM artists
WHERE first_year_active > 2015 LIMIT 10;

SELECT s.name, s.artist
FROM songs AS s, artists AS ar, albums AS al
WHERE album = al.name AND s.artist = ar.name

AND release_year = 2010
ORDER BY first_year_active;

Aggregation

Single Row Operations: Single-Table Queries

So far, our SQL statements have referred to the values in a single row at a time.

name fur

abraham long

barack short

clinton long

delano long

eisenhower short

fillmore curly

grover short

herbert curly

table dogs

SELECT name FROM dogs
WHERE fur = 'long' OR name = 'grover';

name

abraham

clinton

delano

grover

Write a query that outputs the name of dogs that
either have long fur or are named Grover.

output:

Single Row Operations: Join

Write a query that outputs the names and
fur types of all of Fillmore's children.

parent child

delano herbert

fillmore delano

fillmore grover

name fur

delano long

herbert curly

grover short

table parentstable dogs

SELECT name, fur FROM dogs, parents

name fur parent child

delano long delano herbert

delano long fillmore delano

delano long fillmore grover

herbert curly delano herbert

herbert curly fillmore delano

herbert curly fillmore grover

grover short delano herbert

grover short fillmore delano

grover short fillmore grover

name fur

WHERE parent = 'fillmore' AND
name = child;

delano long

grover short

result of cross product:

output:

Aggregation

Aggregation is the process of doing operations on groups of rows instead of just a
single row.

name fur age

delano long 10

eisenhowe
r

short 7

fillmore curly 8

grover short 2

herbert curly 4

table dogs

count

5

avg_age

6.2

output:

output:

SELECT AVG(age) AS avg_age FROM dogs;

output the average age of all dogs:

SELECT COUNT(*) AS count FROM dogs;

output the total number of rows:

SQL provides aggregate functions whose return values can be used as entries in a
column.

Aggregate Function

Aggregation function Return value

MAX([columns]) The maximum value in the given column(s)

MIN([columns]) The minimum value in the given column(s)

AVG([column]) The average value in the given column

COUNT([column]) The number of values in the given column

SUM([column]) The sum of the values in the given column

SELECT SUM(age) AS sum_age FROM dogs;

output the sum of ages of all dogs:

SELECT MIN(name) AS min_name FROM dogs;

output the name that comes first alphabetically:

name fur age

eisenhower short 7

delano long 10

grover short 2

table dogs

Groups

By default, aggregation is performed over all the rows of the table.

name fur Age

eisenhower short 7

delano long 10

grover short 2

fillmore curly 8

herbert curly 4

table dogs

SELECT fur, AVG(age) AS avg_age
FROM dogs GROUP BY fur;

fur avg_age

Write a query that finds the average age of
dogs for each fur type.

short 4.5

long 10

output:

curly 6

We can specify that we want to group rows based on values in a particular
column using the GROUP BY clause in a SELECT statement.

More on Group By

You can GROUP BY any valid SQL expression, which includes using multiple
column names and operators.

Demo_2

SELECT [columns] FROM [table] WHERE [condition]

GROUP BY [expression]

ORDER BY [order] [ASC/DESC]

LIMIT [number];

A single group consists of all rows for which [expression] evaluates to the same
value.

The output table will have one row per group.

Check Your Understanding
table dogs

name fur age

abraham long 9

herbert curly 4

fillmore curly 8

delano long 10

eisenhower short 3

1. Write a query that outputs a table
containing the average age of each
parent's children.

1. Write a query that outputs a table with 2
rows: one with the number of dogs of
even ages and the other with the number
of dogs of odd ages (ignore order).

parent child

delano herbert

fillmore abraham

fillmore delano

eisenhower fillmore

table parents

count

3

2

parent avg_age

delano 4

fillmore 9.5

eisenhower 8

Remember that you can
GROUP BY expressions
containing operators!

Check Your Understanding
table dogs

name fur age

abraham long 9

herbert curly 4

fillmore curly 8

delano long 10

eisenhower short 3

1. Write a query that outputs a table
containing the average age of each
parent's children.

1. Write a query that outputs a table with 2
rows: one with the number of dogs of
even ages and the other with the
number of dogs of odd ages (ignore
order).

parent child

delano herbert

fillmore abraham

fillmore delano

eisenhower fillmore

table parents

FROM dogs, parents
WHERE child = name
GROUP BY parent;

FROM dogs
GROUP BY age % 2 = 0;

SELECT COUNT(*) AS count

SELECT parent, AVG(age) AS avg_age

Filtering Groups

We know how to filter individual rows using the WHERE clause.

To filter groups, use the HAVING [condition] clause!

name fur age

abraham long 9

herbert curly 4

fillmore curly 8

delano long 10

eisenhowe
r

short 3

table dogs

SELECT fur, AVG(age) AS avg_age
FROM dogs GROUP BY fur
HAVING COUNT(*) > 1;

fur avg_age

Write a query that finds the average age of
dogs for each fur type if there are more than
one dogs with that fur type.

long 9.5

output:

curly 6

name fur age

abraham long 9

eisenhowe
r

short 3

delano long 10

fillmore curly 8

herbert curly 4

table dogs

name fur age

abraham long 9

eisenhowe
r

short 3

delano long 10

fillmore curly 8

herbert curly 4

eisenhowe
r

short 3

abraham long 9

delano long 10

fillmore curly 8

herbert curly 4

SELECT fur, AVG(age) AS avg_age
FROM dogs GROUP BY fur
HAVING COUNT(*) > 1;

fur avg_age

long 9.5

curly 6

Check Your Understanding
table dogs

name fur age

abraham long 9

herbert curly 3

fillmore curly 8

delano long 10

eisenhower short 3

Write a query that outputs the average
age of each parent's children if that
parent's youngest child is at least 5.

parent child

delano herbert

fillmore abraham

fillmore delano

eisenhower fillmore

table parents

parent avg_age

fillmore 9.5

eisenhower 8

SELECT parent, AVG(age) AS avg_age
FROM dogs, parents
WHERE name = child
GROUP BY parent
HAVING MIN(age) >= 5;

Mutating Tables

Databases

In real databases, it’s common practice to initialize empty tables and add rows as
new data is introduced.

Demo_3

Create/ remove tables

To create an empty table, use the CREATE TABLE statement, specifying the table
name and column names (and possible default values):

To remove a table from our database, use the DROP TABLE statement:

CREATE TABLE [name]([columns]);

CREATE TABLE dogs(name, fur, phrase DEFAULT 'woof');

CREATE TABLE parents(parent, child);

DROP TABLE [IF EXISTS] [name];

DROP TABLE dogs;

DROP TABLE IF EXISTS parents;

When adding rows, if no value is
provided for the third column, this
value will be used.

Inserting Records

INSERT INTO [table]([columns]) VALUES([values]), ([values]);

INSERT INTO dogs(name, fur) VALUES('fillmore', 'curly');

INSERT INTO dogs VALUES('delano', 'long', 'hi!');

CREATE TABLE dogs(name, fur, phrase DEFAULT 'woof');

name fur phrase

To insert rows into a table:

fillmore curly woof

INSERT INTO dogs(fur, phrase) VALUES('curly', 'bark');

delano long hi!

short bark

Updating Records

DELETE FROM dogs WHERE fur = 'curly' and phrase = 'WOOF';

UPDATE [table] SET [column] = [expression] WHERE [condition];

UPDATE dogs SET phrase = 'WOOF' WHERE fur = 'curly';

UPDATE dogs SET fur = 'short';

name fur phrase

To update existing entries in a table:

fillmore curly woof

delano long hi!

short bark

DELETE FROM [table] WHERE [condition];

To delete existing rows in a table:

WOOF

short

Summary
Create empty table

- using default values:

Remove table from database

Inserting records (new row):

Updating records (existing row):

CREATE TABLE [name]([columns]);

DROP TABLE [IF EXISTS] [name];

CREATE TABLE [name](...,[column n] DEFAULT [value], ...);

INSERT INTO [table]([columns]) VALUES([values]),
([values]);
INSERT INTO [table] VALUES(...,[values (one for each column)], ...);

UPDATE [table] SET [column] = [expression] WHERE [condition];

DELETE FROM [table] WHERE [condition];

Summary

We can use aggregate functions to perform operations on a set of rows
rather than on individual rows.

To specify an expression by which to group rows, use the GROUP BY
clause.

To filter groups based on a condition over the whole group, use the
HAVING clause.

In real databases, we commonly initialize empty tables and insert, update,
or remove records over time.

