
Macros

By Chris Allsman from cs61a



Review: Representing Expressions



Representing Expressions

● In Scheme, we can create lists that “look like” combinations

○ In fact, in Scheme, expressions are lists (or primitive values)

● Quoting prevents evaluation of an expression

● Calling eval on an unevaluated expression will evaluate that 
value

Demo_1

scm> ‘(+ 1 2)
(+ 1 2)
scm> (eval ‘(+ 1 2))
3

scm> (list 'quotient 10 2)
(quotient 10 2)
scm> (eval (list 'quotient 10 2))
5



Expressions In Scheme



Expressions As Data

Recall: programs are composed of expressions, but manipulate 
values or data

In Scheme, expressions are either primitive expressions or lists -
which means they’re also a form of data!

This means we can:

● Assign expressions to variables
● Pass expressions into functions
● Create & return new expressions within functions

Demo_2



Begin 

begin is a special form takes in any number of expressions, 
evaluates them in order, and evaluates to the value of the final 
expression

(begin 3 2 1)
1

scm> (begin (define x 2) (define x (+ x 1)) x)
3



Let

(let ((symbol1 expr1)

(symbol2 expr2)

…)

body)

Demo_3

scm> (let ((x 2)
(y 3))
(+ x y))

5

Each symbol is bound to 
the value of the expression 
in parallel

Evaluate to the value of the 
body using the binding

The bindings only 
exist when 
evaluating the body



Macros



Example: Double

Let’s write a procedure double. We want it to evaluate whatever 
expression we pass in twice.

scm> (double (print 2))
2
2

Issues:
● How do we prevent evaluation of the input?
● How do we easily get the intended behavior?

Demo_4



Macros
Macros are a more convenient way to transform or create expressions
The define-macro special form will create a macro procedure
Macros take in and return expressions, which are then evaluated in 
place of the call to the macro

(define-macro (twice expr)
(list 'begin expr expr)) scm> (twice (print 2))

2
2

Equivalent to:

(begin (print 2) (print 2))

Returns a piece of code that then gets 
evaluated 

A piece of code that 
hasn't been evaluated



Evaluating Macros
Recall evaluation procedure used for regular call expressions:

1. Evaluate the operator sub-expression, which evaluates to a regular procedure.
2. Evaluate the operand expressions in order.
3. Apply the procedure to the evaluated operands.

Macros, on the other hand, do the following:

1. Evaluate the operator sub-expression, which evaluates to a macro procedure.
2. Apply the macro procedure to the operand expressions without evaluating 

them first.
3. Evaluate the expression returned by the macro procedure in the frame the 

macro was called in



Writing Macros

Because macros take in and return expressions, 
when writing macros you should think about:

1) What types of expressions you’ll take in
2) What expression has equivalent behavior to 

your macro

Consider a macro add-to which should take in a 
symbol and an expression, and increment the 
value of the variable by the expression.

scm> (define x 1)
scm> (add-to x (+ 1 2))
x
scm> x
4

What’s the equivalent 
expression?

Demo_5



For Macro

Scheme doesn't have for loops, but thanks to macros, we can add them.

(define-macro (for sym in vals do expr)
(list 'map (list 'lambda (list sym) expr) vals))

scm> (for x in '(1 2 3 4) do (* x x))
(1 4 9 16)
scm> (map (lambda (x) (* x x)) '(1 2 3 4))
(1 4 9 16)

Demo_6



Quasi-Quotation

Demo_7



Quasi-quoting

Quasiquotation allows you to have some parts of a list be read literally and some 
parts be evaluated.
It's especially useful for constructing code in macros.

(define-macro (for sym vals expr)
(list 'map (list 'lambda (list sym) expr) vals))

(define-macro (for sym vals expr)
`(map (lambda (,sym) ,expr) ,vals))

Much cleaner, right?

Short for
(quasiquote …)

Short for (unquote …)



You Try:

Write the twice and add-to macros using quasiquotes

(define-macro (twice expr)
(list 'begin expr expr))

(define-macro (add-to sym expr)
(list ‘define sym (list ‘+ sym expr)))


