
Sequences
&

Data Abstraction

Sequences

Sequences

A sequence is an ordered collection of values.

strings
sequence of
characters

"hello world"
"abcdefghijkl"

[1, 2, 3, 4, 5]
[True, "hi", 0]

lists
sequence of values
of any data type

Demo

Sequence Abstraction

All sequences have finite length.

Each element in a sequence has a discrete integer index.

4 5 1 10 2 -3 0

0 1 2 3 4 5 6

>>> [4, 5, 1, 10, 2, 3, 0]
[4, 5, 1, 10, 2, 3, 0]

Sequences share common behaviors based on the shared trait of having a finite length and
indexed elements.

● Retrieve an element at a particular position
● Create a copy of a subsequence
● Check for membership
● Concatenate two sequences together
● ...

What can you do with sequences?

>>> lst = [1, 2, 3, 4, 5]
>>> lst[2]
3
>>> "cs61a"[3]
'1'

Get item: get the ith element <seq>[i]

>>> lst = [1, 2, 3, 4, 5]
>>> lst[1:4]
[2, 3, 4]
>>> "lolololololol"[3::2]
'ooooo'

Slice a subsequence: create a copy of the
sequence from i to j <seq>[i:j:skip]

>>> 3 in [1, 2, 3, 4, 5]
True
>>> 'z' in "socks"
False
>>> 2 + 4 in [7, 6, 5, 4, 3]
True

Check membership: check if the value of
<expr> is in <seq> <expr> in <seq>

>>> [1, 2, 3] + [4, 5]
[1, 2, 3, 4, 5]
>>> "hello " + "world"
"hello world"
>>> [-1] + [0] + [1]
[-1, 0, 1]

Concatenate: combine two sequences into a
single sequence <s1> + <s2>

Sequence Processing

Iterating through sequences

You can use a for statement to iterate through the elements of a sequence:

for <name> in <seq>:

<body>

Rules for execution:
For each element in <seq>:

1) Bind it to <name>
2) Execute <body>

i = 0
for elem in [8, 9, 10]:

print(i, ":", elem)
i += 1

Output

0 : 8
1 : 9
2 : 10

Range

The range function creates a sequence containing the values within a specified
range.

range(<start>, <end>, <skip>)

Creates a range object from <start> (inclusive) to <end> (exclusive), skipping every
<skip> element

This is useful for looping:

>>> for e in range(1, 8, 2):
... print(e)
1
3
5
7

>>> lst = [8, 9, 10]
>>> for i in range(len(lst)):
... print(i, ":", lst[i])
0: 8
1: 9
2: 10

List Comprehensions

You can create out a list out of a sequence using a list comprehension:

[<expr> for <name> in <seq> if <cond>]

lst = []
for <name> in <seq>:

if <cond>:
lst += [<expr>]

Rules for execution
1. Create an empty result list that will be the

value of the list comprehension
2. For each element in <seq>:

A. Bind to that element to <name>
B. If <cond> evaluates to a true value,

then add the value of <expr> to the
result list

Note: binding to <name> will not overwrite local bindings

List Comprehension Examples

>>> [x ** 2 for x in [1, 2, 3]]
[1, 4, 9]

>>> [c + “0” for c in "cs61a"]
['c0', 's0', '60', '10', 'a0']

>>> [e for e in "skate" if e > "m"]
['s', 't']

>>> [[e, e+1] for e in [1, 2, 3]]
[[1, 2], [2, 3], [3, 4]]

Data Abstraction

Data Abstraction

● Compound values combine other values together

○ A date: a year, a month, and a day

○ A geographic position: latitude and longitude

● Data abstraction lets us manipulate compound values as units

● Isolate two parts of any program that uses data:

○ How data are represented (as parts)

○ How data are manipulated (as units)

● Data abstraction: A methodology by which functions enforce an abstraction barrier

between representation and use

Rational Numbers

numerator

denominator

Exact representation as fractions

A pair of integers

As soon as division occurs, the exact representation may be lost! (Demo)

Assume we can compose and decompose rational numbers:

● rational(n, d) returns a rational number x

● numer(x) returns the numerator of x

● denom(x) returns the denominator of x

Constructor

Selectors

Rational Numbers Arithmetic

3

2
*

3

5
=

9

10

Example General Form

dx * dy
=

nx * nynx

dx
*

ny

dy

3

2
+

3

5
=

10

21

dx * dy
=

nx*dy + ny*dxnx

dx
+

ny

dy

dx * dy

Rational Numbers Arithmetic Implementation

Implementation General Form

nx

dx
* =

nx * nyny

dy

dx * dy

nx

dx
+ =

nx*dy + ny*dxny

dy

def mul_rational(x, y):
return rational(numer(x) * numer(y),

denom(x) * denom(y))

def add_rational(x, y):
nx, dx = numer(x), denom(x)
ny, dy = numer(y), denom(y)
return rational(nx * dy + ny * dx, dx * dy)

rational(n, d) returns a rational number x
numer(x) returns the numerator of x
denom(x) returns the denominator of x

Constructor

Selectors

Rational Numbers Arithmetic Implementation

def mul_rational(x, y):
return rational(numer(x) * numer(y),

denom(x) * denom(y))

def add_rational(x, y):
nx, dx = numer(x), denom(x)
ny, dy = numer(y), denom(y)
return rational(nx * dy + ny * dx, dx * dy)

rational(n, d) returns a rational number x
numer(x) returns the numerator of x
denom(x) returns the denominator of x

Constructor

Selectors

def print_rational(x):
print(numer(x), '/', denom(x))

def rationals_are_equal(x, y):
return numer(x) * denom(y) == numer(y) * denom(x)

These functions
implement an

abstract
representation for
rational numbers

Representing Rational Numbers

def rational(n, d):
"""A representation of the rational number N/D."""

return [n, d]

def numer(x):
"""Return the numerator of rational number X."""

return x[0]

def denom(x):
"""Return the denominator of rational number X."""

return x[1]

Construct a list

Select item from a list Demo

Reducing to Lowest Terms

3

2
*

5

3
=

5

2

2

5
*

1

10
=

1

2

15

6
*

1/3
=

5

21/3

25
*

1/25
=

1

250 1/25

from fractions import gcd

def rational(n, d):
"""A representation of the rational number N/D."""
g = gcd(n, d) # Always has the sign of d

return [n//g, d//g]

Greatest common divisor

Demo

Abstraction Barriers
Parts of the program that... Treat rationals as... Using...

Use rational numbers
to perform computation whole data values

add_rational,
mul_rational,

rationals_are_equal,
print_rational

Create rationals or
implement

rational operations

numerators and
denominators rational, numer, denom

Implement selectors and
constructor for rationals two-element lists list literals and

element selection

Implementation of lists

Violating Abstraction Barriers

add_rational([1, 2], [1, 4])

def divide_rational(x, y):
return [x[0] * y[1], x[1] * y[0]]

Does not use
constructors Twice!

No selectors!

And no constructor!

Dictionaries
(if time)

Demo

