
Higher-Order Functions

Slides adapted from Berkeley CS61a

Higher-Order Functions

Functions are first-class, meaning they can be manipulated as values

A higher-order function is:

A function that takes a function as an argument

and/or

A function that returns a function as a return value

Generalization

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Area:

Demo_1

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Area:

Finding common structure allows for shared implementation
Demo_1

Higher-Order Functions

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

Demo_2

Summation Example

def cube(k):

return pow(k, 3)

def summation(n, term):

"""Sum the first n terms of a sequence.

>>> summation(5, cube)

225

"""

total, k = 0, 1

while k <= n:

total, k = total + term(k), k + 1

return total

Function of a single argument
(not called "term")

A formal parameter that will be bound to a
function

The cube function is passed as an
argument value0 + 1 + 8 + 27 + 64 + 125

The function bound to term gets called
here

Functions as Return Values

Demo_3

Locally Defined Functions

Functions defined within other function bodies are bound to names in a local frame

def make_adder(n):
"""Return a function that takes one argument k and returns k + n.

>>> add_three = make_adder(3)
>>> add_three(4)
7
"""
def adder(k):
return k + n

return adder

A function that returns a
function

The name add_three is bound to a
function

A def statement within another
def statement

Can refer to names in the enclosing
function

Call Expressions as Operator Expressions

make_adder(1) (2)

make_adder(1)

3

2

make_adder

func adder(k)

make_adder(n):1

func adder(k)

def adder(k):
return k + n

return adder

An expression that evaluates to a
function

An expression that evaluates to its
argument

Summary

● Higher-order function: any function that either accepts a function as an argument and/or

returns a function

● Why are these useful?

○ Generalize over different form of computation

○ Helps remove repetitive segments of code

● We saw nested functions (closures) can access variables in outer function through static

scoping.

A More Complex Example
def make_adder(n):

"""Return a function that takes one argument k and returns k + n.

>>> add_three = make_adder(3)

>>> add_three(4)

"""

def adder(k):

return k + n

return adder

def square(x):

return x * x

def compose1(f, g):

def h(x):

return f(g(x))

return h

compose1(square, make_adder(2))(3)

